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Abstract 

A preliminary exploration is made of the possibility that at suEiciently high 

seed densities, explosive galaxy formation might percolate, thus losing the initial 

explosion scale. An assortment of parameter choices are investigated and the 

fractal patterns of the resultant systems are presented. It is shown that various 

dimension, d,, fractal patterns, (power law correlation functions, t(r) w r7 with 

index y=dr3), can be obtained on scales which depend on the input. In particu- 

lar, for one choice of parameters, it is possible to generate structure agreeing with 

galaxy-galaxy correlations out to w 12&c. For another parameter choice, 

although the distribution generated is not as steeply correlated as galaxies are 

observed to be, a significant structure is generated on larger scales (out to - 

50&c). The models often produce a correlation function with a slope which 

changes in different distance ranges, thus a structure which is not entirely scale- 

free. 

Subject headings: galaxies: clustering - galaxies: formation 
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1. Introduction 

Ostriker-Cowie explosions (Ostriker and Cowie 1981) were proposed as a 

possible mechanism for galaxy formation, but isolated explosions of this type 

were only able to generate structure on very small scales. Here we will explore 

the question of whether explosions of primeval galaxies percolate (Schramm 

1985), thus losing the initial explosion scale and allowing larger scale structure to 

be generated. One way of examining the plausibility of the percolating explosive 

galaxy formation mechanism is to compare the correlated structure it could pro- 

duce to the observed two-point correlation function. 

The distribution of galaxies and of clusters of galaxies can be described by 

the spatial two-point correlation function, e12(r). The galaxy-galaxy correlation 

function follows a power law out to distances of - 15h-‘Mpc, (h=He/lOO), 

beyond which it appears to be negative. This power law takes the form 

<J r)m20(hr)-‘,* (Davis and Peebles 1983). The cluster-cluster correlation func- 

tion for Abel richness 2 1 clusters can be approximated, (there is large uncer- 

t.ainty in the exponent), by the power law <,,(r)~360(hr)-‘.* out to -. 150h~‘Mpc 

(Bahcall and Soneira 1983). The amplitude of the R 2 1 cluster-cluster correla- 

tion function is thus - 18 times higher than the galaxy-galaxy correlation func- 

tion. It is, however, perhaps more natural to compare the amplitudes in terms of 

a dimensionless scale of units, in which r is divided by the mean separation 

between objects. In this system of units, galaxies are three times more strongly 

correlated than clusters of galaxies (&slay and Schramm 1985). The power law 

behavior over a large range of distances and the relative constancy of the ampli- 

tude are indications of scale invariance. Thus, as with many phenomena in 

nature, it seems that the distribution of matter in the universe can be described 

as a fractal (Mandelbrot 1977) over a large range of distances. The fractal 

dimension, d,, provides a description of the geometry of the distribution, 
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equivalent to the information provided by the exponent, 7, in the power law 

representation of the correlation function since the slope of the power law is sim- 

ply y=dr3. Thus we can think of the distribution of galaxies in space as a frac- 

t.al of dimension d,.==1.2, an indication that some large scale structure exists since 

d, is nowhere near the value of three that a uniform random distribution would 

produce. Although there is uncertainty in the observations, d, also appears to be 

near 1.2 on the scale of clusters of galaxies (and maybe even superclusters (Bah- 

call 1985)). This brings about the question: what is the scale-free process which 

generates scale-invariant structure out to at least 15h-‘hfpc and provides correla- 

tions, if not continued scale-invariance, on even larger scales? 

A potential candidate to explain the observed large-scale structure is a per- 

colating (Schramm 1985) explosive galaxy formation mechanism. One such 

mechanism, baaed on the Ostriker-Cowie scenario, is described by Vishniac, 

Ostriker, a,nd Bertschinger (1985). Here we use a closely related scheme. In this 

scheme, galaxy formation proceeds through an amplification of initial perturba- 

tions, which in this case are primeval galaxies with masses in the range 

10R-lO’*,\~ and initial radii of 0.014.3Mpc, (when the value h=0.75 is used), at 

redshifts between fifty and two. These primeval galaxies explode with energies 

10sg-lOssergs, forming dense expanding shells behind a shock front. These large 

explosions are driven by explosions of many massive young stars within the 

galaxies. The shock waves are likely to initiate the formation of other primeval 

galaxies as they expand and intercept dense regions that we will call primordial 

galaxies, and provoke star formation in these regions. Thus later explosions of 

primeval galaxies are triggered by earlier events, resulting in a highly correlated 

network of material. If the network percolates to large enough distances and 

generates the correct correlation function, explosive galaxy formation could be 

the scale-free process required to match observations. 
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The model described in the previous paragraph differs in an important 

respect from the original Ostriker-Cowie scenario. They were concerned with the 

fragmentation of the shocked gas into gravitationally bound objects (which could 

then act as a second generation). In our model the seeds (primordial galaxies) are 

already present and require only an external pressure (triggering) to precipitate 

collapse and star formation. 

A recent survey (Lapparent, Geller, and Huchra 1985) reveals that galaxies 

are distributed on the surfaces of shells surrounding voids with typical diameters 

of 25h-‘Mpc. On first glance it seems that an explosive galaxy formation 

mechanism could naturally explain such structures. 

It is important to realize that the two-point correlation function is far from 

being a complete description of t,he structure of the universe. Two different pat- 

terns with identical correlation functions can have significantly different features. 

Additional information is provided by three-point and four-point functions (Pee 

bles 1980) that are observed to follow a simple hierarchical scaling pattern. 

Features such as filaments (Fry 1985a) and voids (Fry 1985b), that are clearly 

apparent to the eye, are often difficult to quantify statistically, but such details 

must be examined to obtain a complete analysis of a model. In this paper, how- 

ever, we will concentrate on the two-point function as a first step towards exa- 

mining the explosive galaxy formation model. 

In section II, we discuss the method used to simulate galaxy formation and 

to determine the correlations of the resulting distribution of material. Section III 

is an application of these methods to a typical case. Section IV is a summary of 

the results and a discussion of the various trends in the data. In section V, we 

briefly examine the plausibility of this model in the real world, by relating its 

parameters to physical masses, distances, and times. We will see that the aver- 

age radius of an explosion is at most N 3Mpc and the average number density of 
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exploded galaxies is N 0.01Mpcm3. Section VI is a comparison of the most 

interesting cases to observations and a summary of results. Finally, in the 

Appendix, we tabulate all results. 

II. Method 

To simulate the distribution of material that would result from an explosive 

galaxy formation mechanism, we begin with n, (n=8000,16000 or 32000). loca- 

t,ions of primordial galaxies within a cube with sides of unit length. These galax- 

ies, which we will call “seeds”, with Cartesian coordinates, z,y, and z, between 0 

and 1: are randomly distributed. (Most simulations in percolation theory have 

been performed on a lattice.) Initially a fraction, /, of the seeds are randomly 

selected to represent the explosions, out to a radius r, of primeval galaxies in 

these locations. We designate these explosions as the first generation. It should 

be noted that, although these first generation explosions occur at the same time 

in this simulation, they would not realistically occur at the same time. It can be 

argued, however, that the time at which the explosions occur does not affect the 

eventual distribution of matter, and thus will not change the resulting fractal 

dimension. Any other explosions to occur in this simulation are “triggered” by 

previous explosions. Explosions are triggered at all those seed locations at dis- 

tances less than r from any seed which has already exploded. Thus the first gen- 

eration triggers any seeds which sat,isfy this distance criterion, and they form a 

second generation. The second generation members then trigger a third genera- 

tion, the third a fourth, etc., until there are no seeds within a distance r of any 

seed which has been assigned to the last generation. 

It should be noted that the use of a constant t is an approximation to sim- 

plify this simulation. Two effects, that tend to cancel, act to change r. First, 

explosions tend to be larger at later times due to dynamics considerations. 
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Second, the universe expands as the process occurs and the distance between 

seeds increases. This effect would not be important if the series of explosions 

takes place within a Hubble time, but it seems unlikely that this would be the 

case. A more detailed calculation would be required to determine the effects of a 

changing radius. 

To assure that there are no edge effects, that would cause a deficiency of 

explosions near t,he edge of the cube, periodic boundary conditions are used, 

allowing explosions near one edge to trigger seeds on the opposite edges. Thus 

when calculating the distances between two seeds we use the minimum of q-z1 , 

z-1,+1, and z?-~~-1 as the separation in the z direction and the analogous 

minima as separations in the y and z directions. 

Two parameters must be specified before a simulation run. It is convenient 

to express the first as the dimensionless ratio, D, of the radius of an explosion to 

the mean separation between seeds: D=r/n-@. The second parameter is f, the 

fract,ion of the seeds exploding initially. 

To obtain a completely scale-free structure the network of explosions must 

percolate, that is the largest interconnected network must extend to infinity or in 

our case from one edge of the cube to the other (Essam 1980). For our purposes 

it is adequate 60 make a rough judgement of whether percolation occurs. The 

members of the largest interconnected network are counted and identified. A 

three-dimensional diagram of this network alone can be examined to see if it 

extends through t,he entire space. Alternatively we can, in some cases, simply 

make the judgement baaed upon the number of members in the network, since if 

there are a very large number of members it may be obvious that percolation 

occurs. 

A logarithmic plot of N(r), (the number of pairs of points, among all the 

seeds which have exploded, in the bin at separation r-Ar/2 to r+Ar/2), vs. r is 
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examined. If the curve is Eat in a certain range of r’s, the distribution of matter 

is in a fractal ,pattern, over this range, with dimension, d,, equal to the slope of 

the line. A(r) is related to the two-point correlation function c(r), by means of 

the equation: 

t(r)= N(WLAr) 

N,,Ar) ' 
where lVr,,Ar) is the number of pairs, in the bin at separation r, expected in a 

random distribution. The exponent, 7, in the power law correlation function is 

then simply given by: r=d,-3. To allow this plot to extend out to separations of 

0.5 without edge effects, we must again calculate distances using periodic boun- 

dary conditions, as we did when setting up the distribution. We ‘test the 

effectiveness of this procedure on a three-dimensional random distribution. This 

test yields d~3.00 as expected. 

To be complete, we plot the same curve for the largest interconnected net- 

work alone when it has enough members that this is practical. It is not possible 

to avoid edge effects since a chain would not necessarily connect from one side to 

the opposite side if we were to use periodic boundary conditions. Instead we 

correct for edge effects, dividing N(r) by a correction factor C where C is given 

by: 

*r 
27 

C=+L ;I(l-rsin~cos~)(l-rsinr3sin~)(l-mos~)sin~d~& 

=I-1.5r+O.63662?4.079577? (2) 

This correction is veriEed to yield a plot with slope 3.00 when applied to a ran- 

dom distribution. Corrected and uncorrected curves are presented in Figure 1 for 

n=8000 randomly distributed points. 

The above methods will be illustrated by the example in the following sec- 

tion. 
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III. Sample Case 

A typical case which illustrates all the methods described in the previous 

section is the case with D=O.8 and f=O.OZ. For this case it is most convenient 

to choose n=16000, since for this value a large enough number of seeds explode 

to accurat,ely determine the correlation function. /Xn=320 of these seeds 

explode initially. Three runs are executed, each with different random coordi- 

nates chosen as seed locations. We discuss here the results for what we denote as 

run a. In run a the 320 first generation explosions trigger 659 second generation 

explosions. This process continues until 4004 seeds have exploded. The shells of 

these explosions are illustrated in Figure 2a. In this figure no non-random struc- 

ture is readily apparent. The longest interconnected network among the 4004 

explosions has 2491 members. This network alone is plotted in Figure 2b. Next, 

the curve logiV(r) vs. logr, given in Figure 3, is examined. The slope of the curve 

increases as we pass from lower to higher separations aa might be expected. 

There is a flat portion of the curve, with slope $.=2.01&.02, between l.lr, and 

2.4r, where rc is the radius of an explosion: 

r,=Dn-'f3=0.03175. (3) 
The slope of the correlation function, 7, in this region is then 4.99&.02. The 

region of the curve between 2.5r, and 6.65, has an average slope of 2.55&02, 

yielding 7=-0.45h.02, and the region between 6.9r, and 14.4r, gives 

d,-==3.09~.01 or ~=+0.09&.01. This increase in slope to near three at higher 

separations is typical to many cases. It can be understood in the case D=O.O8, 

f=O.OZ by observing that the average number of generations triggered succes- 

sively by a first generation member is 12.5 so that when we look at scales larger 

than some fraction of 12.57, we might expect a random distribution. The slope 

of three at large separations also explains the lack of observable structure in Fig- 

ure 2a. The largest network of explosions for D=O.8, /=0.02 is found to have a 
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slope +=2.23f.01, so that r=-0.77h.01, from 1.37, to 7.7r,. 

To facilitate comparison of models with the same D and f, but with a 

different initial distribution of seeds, in Table 1 we present results for three runs 

of the case with D=O.8, /=0.02. Note that although the parameters D and /are 

the same, the results are quite ditTerent in cases a,b, and c. 

IV. Results and Trends 

The cases of interest have a D between 0.5 and 0.9. For a lower value of D 

explosions are too small, compared to the seed separation, to detonate others so 

the final distribution is very similar to the initial random distribution. If, 

instead, D is larger than 0.9 almost all of the seeds explode so, again, the result is 

a nearly random distribution. For each value of D, several values of j are of 

interest; the larger the value of D, the smaller the {required to achieve percola- 

tion. 

A table of results is presented in the Appendix. Here we will summarize 

these results by pointing out the trends that exist. Figures 4 a,b, and c illustrate, 

for assorted values of D and /, the slopes of the correlation function, 7, and the 

scales over which they apply. Each of the three diagrams depicts cases with a 

different initial random distribution of seeds. It can be seen that the highest 

correlations, that is the largest negative values of 7 for a given D and L usually 

occur on the smallest scales and apply only out to about 4r, on the average. 

Beyond this separation the slope of the correlation function increases gradually to 

a value of approximately zero in most cases. The limited range of applicability 

could be anticipated, since beyond a certain distance, N 4r,, chains of triggered 

explosions tend to branch off in all directions thus increasing the fractal dimen- 

sion. The nearly uncorrelated, 7=0, structure at large separations can be under- 

stood, since on larger scales we can imagine isolated randomly distributed clumps 
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of explosions, with each clump containing explosions which were ultimately trig- 

gered by a certain set of first generation explosions. 

Keeping in mind that the correlation functions have a constant slope only 

over the limited separation ranges illustrated in Figure 4, Figure 5 better facili- 

tates the comparison of the 7’s at the smallest separation range. We notice 

several trends. First, 7 approaches 0 for tiO.5 and ho.9 for the reasons 

described above. But in between these values we see increased correlations since 

explosions are large enough to encompass some seeds, but not so large as to 

detonate too many of them. We also see that for a constant D, the degree of 

correlation decreases with increasing J This can be understood since, the more 

explosions that are ultimately triggered by each first generation member, the 

more correlated the resulting pattern. The average number of triggers per first 

generation member is usually larger if there are fewer first generation members, 

as can be seen in the Appendix. 

The values of 7 for the largest interconnected networks are not presented 

here since they are not central to the point of this paper: however, they are tabu- 

lated in the Appendix for reference. 

V. Relation to the Universe 

To make a judgement as to whether the models of galaxy formation that we 

have considered are capable of producing the observed structure of the universe, 

we must relate them to physical distances and densities. First of all the size of 

an explosion must be estimated. Then we will see if the cases of interest require 

realistic mass densities in seeds, that is mass densities lower than t,he total 

baryon density of the universe. Finally, we consider whether the detonation pro- 

cess proceeds rapidly enough to allow a substantial number of successive triggers 

within a reasonable time scale. 
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The maximum radius of an explosion, that is still capable of detonating a 

seed, can be estimated using the Sedov solution (Sedov 1959; Schwartz, Ostriker, 

and Yahil 1975; Bertschinger 1983) which describes the self-similar expansion of 

the shock during the adiabatic phase: 

For t we substitute the gravitational timescale, that is the Hubble time when the 

explosion occurred. After this time, compressional effects of the shock on an 

intercepted seed are weak, so the seeds will not form primeval galaxies and 

detonate. (The Hubble time is a reasonable choice for cutoff only in the compres- 

sional hypothesis. Fragmentation of a shock wave, as would be necessary in the 

original Ostiker-Cowie scheme, actually becomes easier as the age of the shock 

approaches the age of the universe (Vishniac, Ostriker, and Bertschinger 1985).) 

For p, we use the density of the universe at the redshift of interest: 

pe=1.9 x 10-2gh2R( l+r)3g/cm3. 

We writ,e t in terms of the present age of the universe, to, and the redshift, rir at 

which the explosion occurred: 

t=tO(l+zi)-s/s. (6) 

Lrsing the value 1,=1.5X 10” years, we obtain 

R=3.93(h2R)-‘I’( l+zi)-s~sE~{SiMpe 

or in comoving coordinates 
(7) 

R=2.47(h2fi)-‘I’( l+~~)-‘~~E;(~icipc. (8) 

It has been shown (Sato and Maeda 1983; Ikeuchi, Tomisaka, and Ostriker 

1983) that void regions in the universe expand faster than the outer unperturbed 

comoving regions. Specifically, in a closed universe, R m t4j5. Thus the void has 

an additional growth by a factor (l+r)‘/’ and the radius of the explosion today is 

given by: 
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R=2.47(h?R)-‘f5E~(‘~pe=2.77Mpc (9) 
if the values R=l, h=0.75, and Es,=1 are used. Thus the maximum plausible 

radius for an explosion is - 3Mpc. (This is much smaller than the limit of 

2OMpc provided by microwave background radiation constraints (Vishniac and 

Ostriker 1985), and is also smaller than the shells on which galaxies have recently 

been observed (Lapparent, Geller, and Huchra 1985)). It is apparent that this 

result is not highly dependent on our choices of E, to, h and R. Thus when we 

have a fractal dimension applicable out to 4r,, this is only at most 12Mpc, a 

small scale compared to observations. 

Although the result for the maximum radius of an explosion is not highly 

dependent upon the energy of the explosion, it is still worthwhile to consider 

maximum energy constraints. Discussions of this question are given in Wandel 

(1985) and in Vishniac, Ostriker, and Bertschinger (1985). During the Compton 

cooling epoch. at redshifts greater than approximately 11, the maximum energy is 

given by: 

&,=7.6X 10st-45/2(h2f-l)1~4( l+~)-“/~f, (10) 
where 6 is the efficiency and fr is the fraction of matter contained in interstellar 

gas. At 2=50 this limit is on the order of Es, - 1, and at ~30 it has increased 

to E,, - 10. The upper bound on the energy allowed in an explosion continues 

to increase, perhaps by another order of magnitude, until the redshift at which 

radiative cooling begins to dominate Compton cooling. At these lower redshifts a 

reasonable estimate of the explosion energy is t,he energy a very young galaxy 

might inject into the intergalactic medium, typically E,, - 1. Thus the energy 

can never greatly exceed the value, Est=l, that we have used in our radius esti- 

mate, so the value of R cannot be significantly larger. 

DzO.5-0.9 and R=3Mpc correspond to a number density of primeval galax- 

ies of 0.005 - 0.03 Mpce3. Assuming that mass of a primeval galaxy is in the 
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range lo*-lO’*A& , the mass density of primeval galaxies is between 3.3~10-~~ 

and 2.0~10-~~g/cm? The baryon density of the universe , even as late as 2~2, 

is 2 9x 10-30g/cm3. Thus the densities required, for the cases we have examined 

here, are safely under the critical density. 

Next we focus on the question of the timescale. If it is assumed that detona- 

tion of each new generation occurs after one Hubble time, we find 

tp2w; (11) 
where n is the number of generations and ti and t, are the initial and final times. 

If we begin at ~50, we can fit in only seven generations before ~2, even hav- 

ing overestimated the time before detonation. If, instead, triggering was to occur 

after the Compton cooling time had elapsed, sixty generations could occur 

between ,=50 and ~11, but the radius of these explosions would be smaller. It 

is clear, however, that some of the cases we have examined, (those with a large 

average number of triggers), could have later generations cut off due to this time 

constraint. and thus may not be realistic. 

VI. Conclusion 

We conclude with a discussion of what might be considered t,he most 

interesting cases, the one with the largest correlations and the one which has 

correlations out to t,he largest scales. 

The case with LLO.75 and j=O.Ol has the most highly correlated structure 

of the cases we have considered. Three runs of this case gave 7=-1.i2k.03 out 

to 3.2r,, 7=-1.137&.03 out to 4.3r,, and 7=-1.84f.03 out to 3.2r,. On first 

glance, this case does look promising since the slope of the correlation function is 

nearly identical to the observational value of 7=-1.8. But we must recall that 3 

- 4 rr is only 9 - 12 Mpc at most, not a large enough scale to explain the galaxy- 

galaxy correlations out to - 15Mpc, and certainly nowhere near the scale of 
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cluster-cluster correlations. It should be noted that the slope of the plot of 

log&‘(r) vs. logr increases gradually to three, corresponding to r=O, a value it 

reaches at 6 - 77,. As we would expect an illustration, given in Figure 6, of the 

distribution of matter appears random, as did the distribution in Figure 2a. 

Although the correlations in the case 0=0.85, f=O.OQOS are not large 

enough to match observations, even on the smallest scales, it still has the advan- 

tage of significant correlations on larger scales. The curves logN(r) vs. logr for 

runs a,b, and c are given in Figure 7. The values of 7 for the various separation 

ranges are listed in Table 2. We notice in all three runs, a decreasing slope, of 

the curve logN(r) vs. logr, with increasing separations out to at least Qre, 

behavior opposite to the usual trend. The structure is actually more highly 

correlated at large separations. In run c, the slope never reaches three, but con- 

tinues to decrease out to 17.lr,, the maximum separation considered. In this run, 

7 is between -1.21 and -0.77 in the entire range of separations. Figure 8 illus- 

trates the distribution of material in run c. Here we see two separate st,ructures 

as well as several smaller ones. We can see that structure has been generated, 

even on large scales, in contrast to featureless Figure 2a and the distribution pre 

duced in the case 0=0.75, /=O.Ol. It should be noted that run c of the case 

with kO.85. f=O.OOl exhibits similar behavior, with a 7 in the range between 

-0.94 and -0.66. Although the -y‘s in these cases are not as low as the observed 

7=-1.8, significant structure is generated on large scales. These cases could, 

however, be unrealist,ic due to time constraint considerations since more than 100 

average successive triggers are required. 

An interesting feature of nearly all cases is a correlation function with a 

slope that changes in different ranges of separations. In most cases we find a 

trend towards lower I$, shallower correlation functions, at larger separations, 

although we have also discussed a case in which d, decreases at larger separations. 
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Thus it could be said that an observed trend of a correlation function with 

changing slope on larger scales would support this method for generating struc- 

ture, This contradicts the preliminary indications of Bahcall and Soneira (1983). 

It is quite possible that gravitational evolution could change the slope of the 

correlation function, or it could change the standard model, as studied numeri- 

cally by Davis, Efstathiou. Frenk, and White (1985). 

Although the simple model we have used here to simulate explosive galaxy 

formation does not succeed in generating the observed structure of the universe, 

it does have certain advantageous features. For certain cases it has been possible 

to generate strucmre with a fractal dimension as low as 1.2, that is a 7 - -1.8, if 

only on very small scales. Perhaps, the most significant result is the possibility, 

for other cases, of generating highly correlated structure out to the largest 

separations that we consider. This certainly provides grounds for further explora- 

tions. Perhaps the assumption of a Gaussian initial distribution is unrealistic 

(Peebles 1983). If we were to begin with an already correlated distribution, for 

example, a cold particle distribution, the result could be a distribution with an 

even lower fractal dimension. Another possibility is an initial distribution of 

seeds in pancakes so that the percolated structures have constrained domains. It 

seems quite possible that some variation of the percolating explosive galaxy for- 

mation mechanism described here is an element of the process that generated the 

observed correlated large scale structure. 
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Table 1: Sample Case Results” 

# 7 Range 7 Range 7 Range #hr. <’ Range 

exp. (r,l (re) (rt) net. (rel 

4004 -0.QQf.0’2 1.1-2.4 -0.48f.02 2.5-6.6 +o.OQ*.01 6.414.4 2491 -0.77f.01 1.3-7.7 

4217 -O.SQ&.O? 1.1-3.0 -0.37*.02 3.2-6.0 0.00f.006 6.3-14.4 3031 -0.76f.02 1.3-4.1 

5095 -0.82f.02 1.1-2.6 -0.33*.02 2.7-6.0 -0.05*.003 6.3-14.4 41?4 -0.72f.01 1.3-3.7 

This table contains results for the example case with D=O.8, /=0.02. For the three runs of this 

case. each with a diflerent random initial distribution of seeds, we give the number of the 16wO 

initial seeds that explode, the values of 7 and the separation ranges in which they apply, the 

number of members in the largest interconnected network and the value 01 7 for this network in 

the specified separation range. 
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Table 2: Correlation Properties” 

Run # 7 Range 7 Range 7 Range 7 Range 
exp. (r,) 7. I, (r,) 

a 2979 -0.67i.02 1.1-3.1 -1.04f.02 3.3-5.9 -1.68~02 6.1-9.1 -0.18*:.04 11.6-17.1 

b 625 1 -0.67f.01 1.1-5.3 -0.76f.01 5.6-9.5 -0.04f.02 11.0-17.1 

c ??30 -0.77f.03 1.1-2.4 -1.08f.005 ?.6-11.6 -1.21*.o,i 12.2-17.1 

“Correlation properties of the noteworthy case with 010.85, /=O.OOOS. 
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Appendix 

Table 3: Model Parameters” 

D I n IA.. 7 Rm , Rm 7 - Ybr , - 
w. I”,. (~,I (‘,) e.1 “a. 0.1 

0.6 0.1 sxx az I.@ -Q~OLtis L.L.L.? ul.alLLm B.%US u 

0.6 0.2 Imo %a3 L.6 -o.Edbu L,L.l.D aDem 3.0*.3 s 
0.6 0.2 pm la ,,a 4.M.cd ,.I.?.0 +o.W~.ae 3.au.a a, 

0.6 0.6 Km em ,,a 4.o**.mn 1.1-111 216 

0,s 0.8 a0 e 1.3 d02+M ,.I-Y.3 s?. 

0.6 o,* am M I.3 -o.O~,am 1.1.1IJ za 

0.7 0.1 pm QI 21 .m&m LI.a.0 +ommp S.&E%1 un Q.DIif.rm DC-a, 

0,7 0.2 - as1 27 4.5g.M 1.*.-11 4.oDH.m 1SLpI us0 a.*m a.o,o* 

0.7 0.1 111) am 2.7 4.e.m L.l.l. +o.mkm 2bxl.1 m 4.00&m Z.DII., 

a.?8 on, spm a 0.0 -m.r&m I.%%? -zn*.m a.7.a Q(Bf.Ql &.6LW 

0.76 apI arm Ju1 0.8 -,.n*.m L.f-41 +am*.o* &.c,LI 

o,n 0.01 srm nw 8,s .l.wun ,.MP uI.mm L‘.LO. 

0.8 m1 IDDm ml ,u .I.uLOl L.14, to.,(t.m La.,,, gl 

0.8 0.01 uca M 18.8 -,,mkm I.,.46 Q.mi.0, m-l‘, m 

0.a 0.0, IKam mm 21.0 -o.@~.O, I.,.,, 0df.m 8.01&, (01 



This table is a presentation of results for cases with various choices of the parameters D and /. 

Each of the three cases in a group has the same D, f and n. but a diUerent random initial distribu- 

tion of seeds. # exp. is the number ol the n initial seeds that ultimately explode and av. trig. is 

the average number of seeds triggered by each first generation member. Columns 6-11 tabulate 

the slope, 7, cd the correlation function in the ranges 01 separations in which this slope is rela- 

tively constant. Tbe last three columns contain the number of members fin the largest intercon- 

nected network, the values of 7 for tbe network, and the range in which these values apply. In 

some cases the largest network does not have a large enough number of members to allow us to 

investigate its correlations. For the several caws where there is no entry for the number of 

members in the largest interconnected network, the number is clearly quite small. 
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Figure Captions 

Figure 1: 

Corrected and uncorrected curves of logA’ vs. logr for n=8000 ran- 

domly distributed points, demonstrating the validity of the edge effects 

corrections that were applied when calculating this same curve for the 

largest interconnected networks. (It was not necessary to apply such 

corrections when it was possible to use the periodic boundary conditions 

described in the text.) 

Figure 2: 

a). Three dimensional representation of the distribution of material, 

(4004 explosions), in run c of the case with D=O.8, /=0.02. The surfaces 

in this figure represent the shells of explosions. In the interior of these 

shells we would find voids. This illustration cannot be distinguished from 

a random distribution. b). The 2491 members of the largest intercon- 

nected network. 

Figure 3: 

The curve logA’ vs. logr for run c of the case D=O.S, j=O.O2. The 

slope of this curve is dF3+-y. The increasing slope at smaller separations 

is typical of most cases. 

Figure 4 a,b,c: 

The slope of the correlation function, 7, in all ranges of r in which it 

is constant, for all cases in runs a, b and c respectively. The solid lines 

signify a relatively constant slope in that range and dotted lines indicate a 
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changing slope. 

Figure 5: 

7’3 in the smallest separation ranges, (the solid portions at the far left 

of Figures 4 a,b and c), are compared between all cases. 7 can be as low 

as - -1.8 at intermediate values of D. 

Figure 6: 

The distribution of material in run a of the case D=O.75, +O.Ol. A3 

in Figure 2a, there is no non-random structure readily apparent. 

Figure 7 a,b,c: 

The curves logA’ vs. logr for runs a,b, and c of the case with 

0~0.85, /=O.OOOS. There is an unusual trend of a decreasing slope as the 

separation increases, particularly in c. 

Figure 8: 

The distribution of material in run c of the case LkO.85, /=O.OOOS. 

Two large separate structure3 are apparent aa well as several small struc- 

tures. This indicates that large scale structure has been generated. Con- 

trast this diagram with Figure 2a. 
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